DEPARTMENT OF PHYSICS

MAHATMA GANDHI UNIVERSITY, NALGONDA

Semester wise Blow up of Syllabi (2017-18)

Blow up of Syllabi

B.Sc Physics Course under CBCS

(W.e.f academic Year 2017-18)

I - SEMESTER STARTS HERE

Lecture No.	Торіс	Remarks
UNIT-I VEC	CTOR ANALYSIS	
Lecture-1	Introduction & Syllabus Analysis	
Lecture-2	Basic Concepts, Partial differentiation	
Lecture-3	Scalar field, Vector Field, Gradient of Scalar field-physical	
	Significance	
Lecture-4	Divergence of a Vector Field-Physical Significance	
Lecture-5	Curl of a Vector Field-Physical Significance	
Lecture-6	Vector Integration-Line, Surface & Volume Integrals –	
	Physical Significance	
Lecture-7	Gauss Divergence Theorem	
Lecture-8	Stokes Theorem	
Lecture-9	Greens Theorem	
Lecture-10	Problems on Gauss Theorem, Stokes Theorem & Green's	
	Theorem	
Lecture-11	Problems	
Lecture-12	Problems	
UNIT-II Me	chanics of Particles	1
Lecture-13	Newton's Laws of Motion & Relation Between them, Inertia,	
	F= ma derivation	
Lecture-14	Linear Momentum, Conservation of Linear Momentum-	
	Examples	
Lecture-15	System of Variable Mass – Newton II Law for Variable Mass	
	System	
Lecture-16	Motion of a Rocket-Expression for Final Velocity at any	
	instant of time –cases	
Lecture-17	Multistage Rocket – Conservation Energy – Conservative Force	
I (10	& Non-Conservative Force with examples	
Lecture-18	Concept of Collisions & Types - I wo & Inree Dimensional	
	Expression for Final Valuation	
Lastura 10	Expression for Final Velocities.	
Lecture-19	Special case of 1 wo Dimensional Elastic Comston - Expression for Final Valuation	
Lacture 20	Impact Parameter Distance of Closest approach & Scottering	
Lecture-20	Cross Section (Concepts Only)	
Lecture 21	Problems	
Lecture-21	chapters of Rigid Rodies	
	channes of Rigid Doules	
Lecture-22	Definitions of Rigid Body, Torque, Angular Momentum &	
	Moment of Inertia ,Rotational Kinetic Energy, Radius of	
	Gyration	
Lecture-23	Rotational Kinematic Relations	
Lecture-24	Equation of motion for a Rigid Body (Rotating rigid Body)	
Lecture-25	Expression for Moment of Inertia Tensor	
Lecture-26	Expression for Euler Equations	
Lecture-27	Application of Euler Equations	
Lecture-28	Precession of a Symmetric top-Expression for Precessional	
	velocity	
Lecture-29	Construction & working of Gyroscope	
Lecture-30	Problems	

UNIT-III C	ENTRAL FORCES	
Lecture-31	Definition & Examples of Central Force	
Lecture-32	Characteristics of Central Force(Conservative Nature of	
	Central force & Conservation of Angular Momentum)	
Lecture-33	Conservative (Central) force as Negative Gradient of	
	Potential energy, Acceleration of a particle under central force	
	in Polar Coordinates	
Lecture-34	Equation of Motion of a particle under a central force	
Lecture-35	Gravitational Field, Gravitational Potential	
Lecture-36	Kepler's Laws – Proof of Kepler's First Law	
Lecture-37	Proof of Kepler's First Law	
Lecture-38	Proof of Kepler's Second & Third Law	
Lecture-39	Rotating Frame s of reference –Expression for Corioli's force	
Lecture-40	Consequences of Corioli's force	
Lecture-41	Problems	
UNIT-IV Spe	ecial Theory of Relativity	
Lecture-42	Inertial & Non-Inertial Frames of Reference ,Galilean	
	Transformations	
Lecture-43	Michelson – Morley Experiment – Explanation of Null Result	
Lecture-44	Postulates of Special Theory of Relativity – Lorentz	
	Transformation Equations	
Lecture-45	Consequences of Lorentz Transformation Equations- Length	
	Contraction, Time dilation	
Lecture-46	Addition of Velocities, Relative mass Expression	
Lecture-47	Mass-Energy Equivalence	
Lecture-48	Momentum energy relations	
Lecture-49	Concept of Four Vector formalism	
Lecture-50	Problems	
Lecture-51	Problems	

Textbooks :

- 1. Berkeley Physics Course. Vol.1, Mechanics by C. Kittel, W. Knight, M.A. Ruderman *Tata-McGraw hill Company Edition 2008*.
- 2. Fundamentals of Physics. Halliday/Resnick/Walker Wiley India Edition 2007.
- 3. First Year Physics *Telugu Academy*.
- 4. Introduction to Physics for Scientists and Engineers. F.J. Ruche. McGraw Hill.

Reference Books :

- 1. Fundamentals of Physics by Alan Giambattista et al *Tata-McGraw Hill Company* Edition, 2008.
- 2. University Physics by Young and Freeman, Pearson Education, Edition 2005.
- 3. Sears and Zemansky's University Physics by Hugh D. Young, Roger A. Freedman *Pearson Education Eleventh Edition*.
- 4. An introduction to Mechanics by Daniel Kleppner & Robert Kolenkow. *The McGraw Hill Companies*.
- 5. Mechanics. Hans & Puri. TMH Publications.
- 6. Engineering Physics. R.K. Gaur & S.L. Gupta. Dhanpat Rai Publications.
- 7. R P Feynman, RB Lighton and M Sands The Feynman Lectures in Physics, Vol.-1, BI Publications,
- 8. J.C. Upadhyay Mechanics.
- 9. P.K. Srivastava Mechanics, New Age International

DEPARTMENT OF PHYSICS

MAHATMA GANDHI UNIVERSITY, NALGONDA

Semester wise Blow up of Syllabi (2017-18)

Blow up of Syllabi

B.Sc Physics Course under CBCS

(W.e.f academic Year 2017-18)

II - SEMESTER STARTS HERE

Paper-II

.

SUB: WAVES & OSCILLATONS

Lecture	Торіс	Remarks
UNIT-I	FUNDAMENTALS OF VIBRATIONS	-
Lecture-1	Definition. Examples and Characteristics of SHM	
Lecture-2	Equation of Motion of Simple harmonic Oscillator	
Lecture-3	Solution of Simple harmonic Oscillator	
Lecture-4	Compound pendulum – Measurement of Time Period (T)	-
	& Acceleration due to gravity (g)	
Lecture-5	Torsion Pendulum & Measurement of Rigidity	
	Modulus(ŋ)	
Lecture-6	Lissajous Diagrams-Combination of two mutually	
	perpendicular SHMs having same frequency (1:1)	
Lecture-7	Lissajous Diagrams-Combination of two mutually	
	perpendicular SHMs having different frequency(1:2)	
Lecture-8	Problems	
Lecture-9	Problems	
UNIT-II	Damped & Forced Oscillations	
Lecture-10	Definition & Equation of motion of damped harmonic	
	Oscillator	
Lecture-11	Solution of damped harmonic Oscillator(Over Damped	
	,Critical Damped)	
Lecture-12	Solution of damped harmonic Oscillator(Under Damped)	
Lecture-13	Energy of Damped harmonic Oscillator & Comparison	
	with un damped harmonic Oscillator	
Lecture-14	Logarithmic Decrement, Relaxation time	
Lecture-15	Quality Factor, Comparison between undamped & Damped Oscillations	
Lecture-16	Equation of motion of damped harmonic Oscillator	
Lecture-17	Definition & Equation of motion of Forced Harmonic Oscillator	
Lecture-18	Solution of Forced Harmonic Oscillator	
Lecture-19	Definition of Resonance, Amplitude Resonance &	
	Velocity Resonance	
Lecture-20	Coupled Oscillators, Normal Coordinates, Normal	
	Modes of Vibrations	
Lecture-21	Equation of motion of Two Coupled Systems	
Lecture-22	Problems	
Lecture-23	Problems	
UNIT-III	Vibrating strings	
Lecture-24	Equation of Transverse wave along a stretched string	
Lecture-25	General Solution of Wave equation & its Significance	
Lecture-26	Modes of vibrations of stretched string clamped at both ends	
Lecture-27	Harmonics, Overtones, Laws of vibrating strings	
Lecture-28	Energy Transport	
Lecture-29	Transverse Impedance	
Lecture-30	Problems	
Lecture-31	Problems	
UNIT-IV	VIBRATIONS OF BARS	1
Lecture-32	Equation of motion of Longitudinal Vibrations in bar-	
l	Expression for wave Velocity	

Lecture-33	Solution of Longitudinal wave equation –Boundary	
	Conditions	
Lecture-34	Longitudinal Vibrations in bar fixed at Both ends(Fixed	
	-Fixed Bar)	
Lecture-35	Longitudinal Vibrations in bar Free at Both ends(Free –	
	Free Bar)	
Lecture-36	Longitudinal Vibrations in bar Fixed at one end & free	
	at other end(Fixed –Free Bar)	
Lecture-37	Longitudinal Vibrations in bar clamped at the mid point	
Lecture-38	Equation of motion of Transverse Vibrations in bar-	
	Expression for wave Velocity	
Lecture-39	Solution of Transverse wave equation –Boundary	
	Conditions	
Lecture-40	Transverse Vibrations in bar fixed at Both ends(Fixed –	
	Fixed Bar)	
Lecture-41	Transverse Vibrations in bar Free at Both ends(Free –	
	Free Bar)	
Lecture-42	Transverse Vibrations in bar Fixed at one end & free at	
	other end(Fixed –Free Bar)	
Lecture-43	Comparison between Longitudinal Vibrations &	
	Transverse Vibrations in bars & Tuning Fork	
Lecture-44	Problems	
Lecture-45	Problems	

Textbooks and Reference books

- 1. Berkeley Physics Course Vol.1, Mechanics by C.Kittel, W.Knight, M.A Ruderaman-Tata-McGraw hill Company Edition 2008.
- 2. Fundamentals of Physics. Halliday/REsnick/Walker Wiley India Edition 2007.
- 3. First Tear Physics Telugu Academy
- 4. Introduction to Physics for Scientists and Engineers F.J.Ruche. Mc Graw Hill.
- 5. Fundamentals of Physics by Alan Giambattista et al Tata-Mc Graw Hill Company Edition, 2008.
- 6. University Physics by Young and Freeman, Pearson Education, Edition 2005.
- 7. Sears and Zemansky's University Physics by Hugh D.Young, Roger A. Freedom Pearson Education Eleventh Edition.
- 8. An introduction to Mechanics by Daniel Kleppner & Robert Kolenkow. The McGraw Hill Companies
- 9. Mechanics. Hans & Puri. TMH Publications.
- 10. Engineering Physics. R.K. Gaur & S.L. Gupta, Dhanpat Rai Publications.
- 11. The Feynman Lectures in Physics, vol,-1 R P Feynman, RB Lighton and M Sands, BI Publications
- 12. Mechanics-P.K. Srivastava New age International.

DEPARTMENT OF PHYSICS MAHATMA GANDHI UNIVERSITY, NALGONDA Semester wise Blow up of Syllabi (2017-18)

Blow up of Syllabi

B.Sc Physics Course under CBCS

(W.e.f academic Year 2017-18)

III - SEMESTER STARTS HERE

Paper-III

UNIT – I :C	hapter -1: Kinetic Theory of Gases	
Lecture No.	Name of the Topic	Remarks
Lecture -1	Syllabus Analysis	
Lecture -2	Introduction –Fundamental Assumptions of Kinetic theory of Gases	
Lecture-3	Kinetic Interpretation of Temperature , average ,rms, most probable velocities of gas molecules	
Lecture -4	Derivation of the equation for Maxwell's law of distribution of velocities& graphical representation.	
Lecture -5	Definition & Derivation for mean free path – Maxwell equation for mean free path.	
Lecture -6	Transport phenomenon- Deriving an expression for coefficient of viscosity of gas.	
Lecture -7	Deriving an expression for coefficient of thermal conductivity on the basis of Kinetic Theory.	
Lecture -8	Deriving an expression for coefficient of diffusion of gas on the basis of Kinetic Theory	
Lecture -9	Problems	
Chapter -2:	Thermodymamics	
Lecture 10	Basics of thermodynamics(System-types: Homogenous, Heterogeneous systems ,Thermo dynamical Variables, Thermo dynamic equilibrium, Thermo dynamic processes work energy Heat)	
Lecture -10	Zeroth law of Thermodynamics, First law of Thermodynamics- Mathematical	
Lecture -11	formulation –limitations ,reversible & Irreversible process with examples & Indicator diagrams	
Lecture -12	Cornot cycle-Cornot engine efficiency (Concepts & formula only)- Cornot's theorem(statement Only)	
Lecture -13	Second law of thermodynamics –Kelvin Plank statement, Clausius statement & their equivalence, thermodynamic scale of temperature	
Lecture -14	Entropy -Physical Significance, Change in Entropy in reversible & Irreversible process	
Lecture -15	Principle of Increase of entropy-entropy & disorder, entropy of Universe	
Lecture-16	Temperature –entropy diagrams(T-S)& Uses	
Lecture-17	Change of entropy of perfect gas in terms of (T,V),(T,P),(P,V)	
Lecture-18	Change of entropy when ice changes into steam & Problems	
Lecture-19	Problems	
UNIT – II C	hapter -1:Thermodynamic Potentials & Maxwell's Equations	
Lecture-20	Thermodynamic Potentials – Derivation of Maxwell Thermodynamic relations	
Lecture -21	Derivation Clausius – Clayperon's equation – Applications	
Lecture-22	Derivation for ratio of Specific Heats	
Lecture-23	Derivation for difference of Specific Heats for perfect gas-special cases (Cp-Cv=R, Cp-Cv=TE α^2 V(for Ideal gases)	
Lecture-24	Cp-Cv=R(1+2a/VRT) for Vander wall's gas	
Lastern 25	Joule Kelvin Effect-Expression for Joule Kelvin coefficient for perfect &	
Lecture-25	Vanderwall's gas	
Lecture-26		
Chapter -2:	Low Temperature Physics	
Lecture-27	Introduction-Phase Transitions of 1 & 11 orders	
Lecture-28	Joule-Keivin effect-Liquification of gas using Porous Plug Experiment	
Lecture-29	Joule expansion	
Lecture -30	Expression for Joule Thomson Cooling	

	Principle of regenerative cooling Liquification of Helium by Capitza's	1
Lecture-31	Method	
Lecture-32	Production of Low temperatures -methods	+
Lecture-33	Adiabatic Demagnetization-Production of Low temperature	
Lecture-34	Refrigeration – Principle-Properties of good Refrigerent.	
Lecture-35	Vapour Compression machine-principle & working	+
Lecture-36	Problems	
UNIT – III·	Quantum Theory of Radiation	<u> </u>
	Basic Terminology used in Quantum Theory of Radiation-Kirchho ff's law.	1
Lecture-37	Stefan's law	
	Black Body-Ferri's Black Body, Distribution of energy in the spectrum of	
Lecture-38	black body.	
Lecture-39	Derivation Wein's Displacement law	
Lecture-40	Derivation Rayleigh-jean's law	
Lecture-41	Quantum theory of radiation –Planks law-U.V Catastrophe	
	Derivation Wein's law, Wein's Displacement law Rayleigh-jean's law,	
Lecture-42	Stefan's law from Plank's law	
Lecture-43	Measurement of radiation using Pyrometer- Types of radiation Pyrometers.	
Lecture -44	Construction & Working of Disappearing Filament Optical Pyrometer	
	Solar Constant-Determining of Solar Constant using Angstrom's	
Lecture -45	Pyroheliometer	-
Lecture -46	Estimation temperature of the Sun-Problems	
UNIT – IV:	Statistical Mechanics	
Lecture-47	Introduction –basic terminology –postulates of Statistical Mechanics	
Lecture-48	Phase Space- Concept of ensemble & some known ensembles-comparison	
Lecture-49	Classical & Quantum statistics & their differences	
	Concept of probability, probability theorems (Addition Theorem,	
Lecture-50	Multiplication theorem)	
Lecture- 51	Maxwell's-Boltzmann Distribution law	
Lecture-52	Molecular energies in an Ideal gas	
Lecture-53	Maxwell's-Boltzmann velocity Distribution law	
Lecture-54	Bose-Einstein Distribution law	
Lecture-55	Application B-E Distribution to Photons- Plank's Radiation formula b	
Lecture-56	Fermi-Dirac Distribution law	
Lecture-57	Application F-D Distribution to white Dwrafs & neutron stars	
	Definition of Fermi energy, comparison between M-B,F-D,B-E distribution	
Lecture-58	laws	
Lecture-59	Concept of Black hole	
Lecture-60	Problems	

<u>Textbooks</u>

1. Fundamentals of Physics. Halliday/Resnick/Walker.C. Wiley India Edition 2007.

2. Second Year Physics – Telugu Academy.

3. Modern Physics by R. Murugeshan and Kiruthiga Siva Prasath (for statistical Mechanics) *S. Chand & Co.* <u>Reference Books</u>

- 1. Modern Physics by G. Aruldhas and P. Rajagopal, Eastern Economy Education.
- 2. Berkeley Physics Course. Volume-5. Statistical Physics by F. Reif. The McGraw-Hill Companies.
- 3. An Introduction to Thermal Physics by Daniel V. Schroeder. Pearson Education Low Price Edition.
- 4. Thermodynamics by R.C. Srivastava, Subit K. Saha&Abhay K. Jain Eastern Economy Edition.
- 5. Feyman's Lectures on Physics Vol. 1,2,3& 4. Narosa Publications.
- 6 .B.B. Laud "Introduction to statistics Mechanics" (Macmillan 1981)
- 7. F.Reif:"Statistical Physics "(Mcgraw-Hill, 1998)

DEPARTMENT OF PHYSICS MAHATMA GANDHI UNIVERSITY, NALGONDA Semester wise Blow up of Syllabi (2017-18)

Blow up of Syllabi

B.Sc Physics Course under CBCS

(W.e.f academic Year 2017-18)

IV - SEMESTER STARTS HERE

Paper-IV

SUB: OPTICS

Unit- I Inter	ference	
Lecture	Topic	Remarks
Lecture-1	Syllabus Analysis	
Lecture-2	Introduction –principle f Super Position, Superposition of two	
	sinusoidal waves	
Lecture-3	Theory of Interference fringes	
Lecture-4	Coherence – Temporal Coherence, Spatial Coherence	
Lecture-5	Conditions for Interference of Light-types of Interference	
Lecture-6	Interference by Division of wave Front-Fresnel's Biprism- Determination of wave length	
Lecture-7	Determination of thickness of a transparent material using Biprism	
Lecture-8	Change of phase on reflection I lovd's mirror experiment	
	Difference between Biprism & Lloyd's mirror fringes.	
Lecture-9	Interference by division amplitude-Oblique incidence of a plane	
	wave on a thin film due to reflected light(Cosine Law)	
Lecture-10	Interference due to transmitted light(Cosine law)	
Lecture-11	Color of thin films, Non-reflecting films, Interference by a plane	
	parallel film illuminated by a point source.	
Lecture-12	Interference by a film with two Non-parallel reflecting surfaces (
10	wedge shaped film)-determination of diameter of thin wire.	
Lecture-13	Newton's rings in reflected light with & without contact between	
Lastura 14	lens & glass plate	
Lecture-14	Newton's rings in transmitted light (Heldinger tringes)	
Lecture-15	Index of liquid using Newton's rings arrangement.	
Lecture-16	Michelson Interferometer- Construction & working –Types of	
Lastura 17	Determination of wave length of managhromatic light difference in	
Lecture-17	wave length of sodium(Na) D. D. lines & thickness of thin	
	wave length of solutin($(Na) D_1, D_2$ lines & the kness of thin transparent plate	
Lecture-18	Problems	
Unit- II Diff	raction	
Lecture-19	Introduction – Diffraction definition & examples. Fresnel's	
	assumptions about Diffraction –Distinction between Fresnel &	
	Fraunhoffer diffraction.	
Lecture-20	Fraunhoffer diffraction due to single slit	
Lecture-21	Diffraction due to circular aperture, Limit of resolution-Rayleigh's	
Lecture 22	Erouphoffer, diffraction due to double slit affect of increasing slit	
Lecture-22	width-distinction between single slit & double slit diffraction	
	nattern	
Lecture-23	Fraunhoffer diffraction pattern with N-slits (Diffractional Grating)	
Lecture-24	Formation of spectrum with a grating-resolving power of grating –	
	difference between prism spectrum & grating spectrum	
Lecture-25	Determination wave length of light in normal method using	
	diffraction Grating.	
Lecture-26	Determination wave length of light in oblique incidence method	
	using diffraction Grating	
Lecture-27	Fresnel's diffraction _Half period zones _ Area of the half period	
	zone – the resultant amplitude at any point due to individual zone &	

	whole wave front	
Lecture-28	Zone plate – Diffraction theory	
Lecture-29	Comparison of Zone plate with convex lens- Phase reversal zone plate	
Lecture-30	Diffraction at a straight edge – Difference between interference &	
	Diffraction-	
Lecture-31	Problems	
Unit- III Pol	arization	
Lecture-32	Introduction – Methods of polarization by reflection . refraction	
Lecture-33	Producing polarized light by double refraction, selective absorption	
	, scattering of light	
Lecture-34	Brewster's law, Malus law	
Lecture-35	Definitions of optic axis O-ray, E-ray, Positive crystal, Negative	
	Crystal ,Uni axial Crystals, Bi axial Crystal	
Lecture-36	Nicol Prism – Principle – construction – working as polarizer &	
	analyzer	
Lecture-37	Refraction of plane wave incident on -ve &+ve crystals (Huygen's	
	explanation)	
Lecture-38	Quarter wave plate & Half wave plate	
Lecture-39	Babinet's compensator – Construction & Theory	
Lecture-40	Optical activity- Fresnel's theory of optical activity & mathematical	
	analysis	
Lecture-41	Laurent's half shade polarimeter - construction & working -	
	analysis of light	
Lecture-42	Distinguish between polarized light & un polarized light,	
	Distinguish between Dextrorotatory & laevorotatory substances	
Lecture-43	Problems	
Unit- IV Cha	apter 1 Aberrations	
Lecture-44	Introduction (Deviation produced by a lens & Dispersion of light	
	through prism)- Aberration & types	
Lecture-45	Spherical Aberration – Longitudinal Spherical Aberration produced	
	by a plane refracting surface	
Lecture-46	Longitudinal Spherical Aberration produced by a spherical	
T 4 47	refracting surface & thin lens	
Lecture-47	Minimization techniques of spherical Aberration	
Lecture-48	Coma - Minimization technique(Abbe – Sine Condition)	
Lecture-49	Astigmatism- Curvature of field & Distortion – Methods of removing	
Lecture-50	Chromatic Aberration – types – Calculation of Longitudinal	
Lecture 50	chromatic aberration of a lens	
Lecture-51	Achromatic doublet – Minimization of chromatic aberration	
Lecture-52	Removal of chromatic aberration by a separated doublet	
Lecture-53	Problems	
Chapter 2: 0	bptical Fibers	
Lecture-54	Introduction of fiber optics –Optical fiber- Principle –Acceptance	
	angle –Derivation for Numerical Aperture	
Lecture-55	Types of Optical Fiber – Step Index Fiber	
Lecture-56	Graded Index Fiber	
Lecture-57	Rays & Modes in Optical Fiber, Optical Fiber materials	
Lecture-58	Principles of fiber communications	
Lecture-59	Advantages of fiber Optic Communication	

Textbooks

1. Optics by Ajoy Ghatak. The McGraw-Hill companies.

2.Optics by Subramaniyam and Brijlal. S. Chand & Co.

3. Fundamentals of Physics. Halliday/Resnick/Walker. C. Wiley India Edition 2007.

4.Optics and Spectroscopy. R. Murugeshan and Kiruthiga Siva Prasath. S. Chand & Co.

5.Second Year Physics – Telugu Academy.

Reference Books

- 1. Modern Engineering Physics by A.S. Vasudeva. S. Chand & Co. Publications.
- 2. Feyman's Lectures on Physics Vol. 1,2,3& 4. Narosa Publications.
- 3. Fundamentals of Optics by Jenkins A. Francis and White E. Harvey, McGraw Hill Inc.
- 4. K. Ghatak, Physical Optics'
- 5. D.P. Khandelwal, Optical and Atomic Physics' (Himalaya Publishing House, Bombay, 1988)

7. Smith and Thomson: 'Optics' (John Wiley and sons)