BSC ELECTRONICS CBCS SYLLABUS BLOWUP 2017-2018

Lecture	Торіс	Remarks
	Unit-I Introduction to current, voltage, resitance, ohms law	
Lecture-1	Sine wave :- equation, real value frequence	
Lecture-2	Average value:- defination, derivation, problem	
Lecture-3	RMS value:- defination, derivation, problem	
Lecture-4	J. Operator:- phase difference	
Lecture-5	Phasor diagram	
Lecture-6	Impedance:- Complex and admittance	
Lecture-7	Rectanguler form of complex numbers -problems	
Lecture-8	Polar form of complex numbers and conversion	
Lecture-9	Polar to rectangular by polar problem	
Lecture-10	concept of voltage and current source	
Lecture-11	KVL - Application to simple circuits	
Lecture-12	KVL - Application to simple circuits	
Lecture-13	finding mesh currents - AC & DC sources	
Lecture-14	KCL- Nodal analysis Application to simple circuit	
Lecture-15	Finding mesh currents AC- circuit	
Lecture-16	problem s	
Lecture-17	Problems	
	Unit - II Super posssition them - Definition proof	
Lecture-19	Finding individual currents in simple circuits using super position	
Lecture-20	Thevenin's theorem defination proof	
Lecture-21	Finding thevenin's equivalant ckt of simple ckt	
Lecture-22	nortons theorem - Defination proof	
Lecture-23	Nortonization the give simple circuit	
Lecture-24	maximum power transfer theorem defination proof	
Lecture-25	finding value RL using maximum power theorem	
Lecture-26	Reciprocity theorem - definaion, poof	
Lecture-27	application to simple circuit	
Lecture-28	millimann's theorem	
Lecture-29	application to simple circuit	
Lecture-30	Problems	
	Unit -III RC & RL Circuit	
Lecture-31	Transistance respone of RC ckt with step input changing of capacitor of and discharging of capacitor –problem caoacitance Discharge	
Lecture-32	RL Circuit step input - transistent response increase and decrease of circuit	

Paper-I (Semester-I) Circuit Analysis

Lecture-33	RC as LPF & HPE
Lecture-34	frequency of RC HPE - problem on LPE & HPE
Lecture-35	frequency response of RL as HPE
Lecture-36	RL as HPE problem of LPE & HPE
Lecture-37	RC as intergration
Lecture-38	RC as defferention
Lecture-39	RL AS integration
Lecture-40	RL AS defferntation
	Unit-IV LCR Serices Circuit - Condition of resonce
Lecture-41	Q factor of serices LCR
Lecture-42	Sharpness of resonace of series LCR ckt
Lecture-43	Problems on Q factor
Lecture-44	LCR parallel resonant circuit
Lecture-45	Q- factor
Lecture-46	Sharpness of resonace bandwith & seleclivity
Lecture-47	Cathode ray oscilioscope
Lecture-48	Problems

Text books:

- **1)** Basic Electronics-Grob 10th edition (TMH)
- 2) Circuit Anallysis-P. Gnanaswan pearson Eduction.
- 3) Circuit and Networks-A. Sudhakar & S. Pallri(TMH)
- 4) Pulse, digital & switching waveforms-Milliman & Taub.
- 5) Networks, Lines and Fields John Ryder(PHI)
- 6) Network theory-Smarajit Ghosh(PHI)

Lecture	Topic	Remarks
	Unit-I Formation of PN Junction	
Lecture-1	Depletion region	
Lecture-2	Junction capacitares, Diode Equation	
Lecture-3	Effect of temperature on reverse saturation curcuit	
Lecture-4	V-I Charectarstion of juction diode	
Lecture-5	Diode as haffwave rectify	
Lecture-6	Diode as full wave rectifies	
Lecture-7	Zenar diode V-I characterstics	
Lecture-8	zenar diode as V-I voltage repaltion	
Lecture-9	Thermal diode V-I Charactrasion	
Lecture-10	Varactor diode wolden & Characterisation	
Lecture-11	Problems	
	Unit-II PNP & NPN Transistor	
Lecture-12	Current componates in BJT	
Lecture-13	Configuration of transistor CB,CE,CC	
Lecture-14	Input charecterisation of BJT-CE mode	
Lecture-15	Output charecteristion of BJT -CE mode	
Lecture-16	Bias conditions(Cut off, active, saturation regions)	
Lecture-17	Two port networks	
Lecture-18	h-parameters	
Lecture-19	hybrid model of CE transistor	
Lecture-20	Determination h-parameter from load line	
Lecture-21	DC loead time	
Lecture-22	AC load time analysis	
Lecture-23	Transistor biasing- self bias	
Lecture-24	Transistor biasing - fixed bias	
Lecture-25	Problems	
Lecture-26	Problems	
	Unit-III FET- Construction and working	
Lecture-27	FET output characterstics	
Lecture-28	FET transfer characterstics	
Lecture-29	FET parameters and their relation	
Lecture-30	FET as voltage variable resistor	
Lecture-31	advantage of FET over BJT	
Lecture-32	MOSFET construction and working	
Lecture-33	Enhancement MOSFET	
Lecture-34	Output and transfer chartactersics	

Paper -II (Semester-II)Electonic Device

Lecture-35	Depletion MOSFET
Lecture-36	Output and transfer chartactersics
Lecture-37	MOSFET as a Switch
Lecture-38	unijunction transistor- construction
Lecture-39	unijunction transistor- working
Lecture-40	Charactactersics of UJT
Lecture-41	UJT as relaxiation oscillator
	Unit-IV SCR Construction
Lecture-42	Two transistor model
Lecture-43	working of SCR
Lecture-44	V-I Charectarstion of SCR
Lecture-45	SCR - power control
Lecture-46	LDR-Construction
Lecture-47	Charactactersics of LDR
Lecture-48	Photo voltaic cell working
Lecture-49	Photo diode working
Lecture-50	Photo transistor working
Lecture-51	Photo transistor charctersics
Lecture-52	LED working
Lecture-53	LED Charactersics

- 1) Electronic Devices and circuits-Millman and Halkias,(TMH)
- 2) Principles of Electronics-V.K.Metha & Rohit Mehta
- 3) Electronics Devices and Circuits-Allen Moltershed(PHI)
- 4) Basic Electronics and Linear Circuits-Bharghava U
- 5) Electronic Devices and Circuits-Y.N.Bapat
- 6) Electronic Devices and Circuits-Mithal.
- 7) Experiments in Electronics-S.V.Subramanyam.

Lecture	Торіс	Remarks
	Unit-I Haffwave rectifier working	
Lecture-1	Haffwave rectifier Idc, Irms, Regulation	
Lecture-2	HWR Ripple factor Efficiency	
Lecture-3	Fullwave rectifier – Working	
Lecture-4	FWR Idc,Irms,regulation	
Lecture-5	FWR ripplefactor Efficiency	
Lecture-6	Bridge rectifier – working	
Lecture-7	Bridge rectifier-Efficiency ripple factor	
Lecture-8	Harmonic components of rectifier output	
Lecture-9	FWR-working of series inductor filter	
Lecture-10	series inductor filleter ripple factor	
Lecture-11	FER Shunt capacitor filter	
Lecture-12	Shunt capcacitor filter ripple factor	
Lecture-13	FWR L section filter working	
Lecture-14	L Section filter ripple factor	
Lecture-15	FWR ∏ Section filter woring	
Lecture-16	∏ section ripple factor	
	Unit-II Block diagram of regulated power supply	
Lecture-17	Three terminal IC 78XX,79XX	
Lecture-18	Series transistor regulated power supply	
Lecture-19	Shunt transistor regulated power supply	
Lecture-20	Principle and working of SMPS	
Lecture-21	Principle and working of UPS	
	Unit-III Classification of amplifier	
Lecture-22	RC Coupled amplifier working	
Lecture-23	RC coupled amplifier -Gain in middle frequency	
Lecture-24	RC coupled amplifier -Gain in low frequency	
Lecture-25	RC Coupled amplifier -Gain in high frequency	
Lecture-26	Frequency response of RC coupled amplifier	
Lecture-27	Hybrid parameters	
Lecture-28	Hybrid model of a transistor	
Lecture-29	Hybrid model of a transistor (cont)	
Lecture-30	Feed back in amplifiers	
Lecture-31	Concept of feed back	
Lecture-32	Effect of negative feed back on gain, bandwidth, noise	
Lecture-33	Effect of negative feed back on in input and output impedance	
Lecture-34	Emitter follower	

Paper -III (Semester-III)Analog circuits

Lecture-35	Emitter follower
Lecture-36	Dariling ton pair
Lecture-37	Dariling ton pair
Lecture-38	Problems on feed back
	Unit-IV Oscillaters-Barkhausen criteria
Lecture-39	Phaseshifft oscillator working
Lecture-40	Phaseshifft oscillator Frequency of oscillation
Lecture-41	Wuein bridge oscillator
Lecture-42	Hartley oscillator
Lecture-43	Colpitts oscillator
Lecture-44	astable multivibrator
Lecture-45	Bistable multivibrator
Lecture-46	Monostable vibrator
Lecture-47	Problems on oscillators
Lecture-48	Problems on oscillators

Recommended Books:

- 1) Electronic Devices and Circuits-Millman and Halkia(TMH)
- 2) Basic Electronics and linear circuits- Bhargava, Kulshreshta&GuptaTMH
- 3) A first course iln Electronics-AA Khan and KK Dey-PHI
- 4) Electronic Devices and Circuit Theory-Robert Boylestad&Louis Nashelsky
- 5) Pulse, Digital and Switching circuits by Milliman and Taub

Paper -IV(Semester-IV) Operational Amplifiers		
Lecture	Торіс	Remarks
	Unit-I Emitter Coupled Differential amplifier,	
Lecture-1	Block diagram of Op, Amp	
Lecture-2	Charactersitcs of Op. Amp	
Lecture-3	Op. Amp parameters-Input resistance Output resistance	
Lecture-4	Common mode rejection ration(CMMR), Slew rate,	
Lecture-5	Offset Voltages	
Lecture-6	Input bias current	
Lecture-7	Virtual ground,	
Lecture-8	Basic OP-Amp circuits - Inverting Op-Amp,	
Lecture-9	Non-Inverting OP-Amp,	
Lecture-10	Frequency response of Op-Amp.	
Lecture-11	Op Amp as: Summing amplifier,	
Lecture-12	Op Amp as: subtractor	
Lecture-13	Op Amp as: Comparator	
Lecture-14	Op Amp as: Voltage follower	
Lecture-15	Op Amp as: Integrator	
Lecture-16	Op Amp as: Differentiator	
	Unit-II Logarithmic amplifier,	
Lecture-17	sine wave generator	
Lecture-18	Square wave[Astable] generator	
Lecture-19	Triangular wave generator	
Lecture-20	Mono stabel multivibrator	
Lecture-21	Solving of simple second order differential equations	
Lecture-22	Basic OP- Amp series regulator and shunt regulator	
Lecture-23	IC 555 Timer [Block diagram and its working]	
Lecture-24	IC 555 as mono stable and astable multivibrators	
	Unit-III Need for modulation	
Lecture-25	Amplitude modulation	
Lecture-26	Frequency modulation	
Lecture-27	Phase modulation	
Lecture-28	Amplitude modulation	
Lecture-29	Analysis of Amplitude modulation	
Lecture-30	side bands	
Lecture-31	modulation index	
Lecture-32	AM modulator	

Lecture-33	Balanced modulator
Lecture-34	Demodulation- diode detector
	Unit- IV Frequncy modulation
Lecture-35	Analysis of FM
Lecture-36	Working of simple frequency modulator
Lecture-37	Detection of FM waves
Lecture-38	FM Discriminator
Lecture-39	Advantages of frequency modulation
Lecture-40	AM and FM Transmitter and radio receivers
Lecture-41	Introduction to PAM
Lecture-42	Pulse position modulation (PPM)
Lecture-43	Pulse width modulation (PWM)
Lecture-44	Puse code modulation(PCM)
Lecture-45	Problems on modulation
Lecture-46	Problems on modulation

Reference Books:

- 1) Op amps and linear Integrated Circuits-Ramakant Gayakwad, PHI
- 2) Linear Integrated Circuits-D Roy Choudhury and Shail B Jain
- 3) Electronic Communication Systems-George Kennedy & BernardDavis
- 4) Principles of Electronic Communication Systems-Louis E Freznel, TMH

Lecture	Торіс	Remarks
Unit-I Num	ber system and Logic gates:	
Lecture-1	Conversions of Binary to Octal and Decimal	
Lecture-2	Octal, Decimal to binary Conversion	
Lecture-3	Hexadesimal number system	
Lecture-4	Binary addition and subtraction	
Lecture-5	OR, AND,NOT Gates & Truth tables	
Lecture-6	XOR, NAND, NOR Gates & Truth tables	
Lecture-7	Design of basic gates using Universal gate(NOR)	
Lecture-8	Design of basic gates using Universal gate(NAND)	
Lecture-9	Half adder	
Lecture-10	Full adder	
Lecture-11	Parallel adder	
Lecture-12	Logic families and their characteristics TTL Logic circuits	
Lecture-13	TTL Logic circuits	
Lecture-14	CMOS Logic circuits	
Lecture-15	ECL Logic circuits	
Lecture-16	Problems on Conversions	
Lecture-17	Problems on Conversions	
	Unit-II Boolean algebra and Combinational logic circuits	
Lecture-18	Boolean algebra Laws	
Lecture-19	Boolean identities	
Lecture-20	DeMorgan's Theorem –I	
Lecture-21	DeMorgan's Theorem –II	
Lecture-22	Simplification of Boolean expressions using Boolean Identies	
Lecture-23	Reduction of Boolean expressions using Karnaugh Maps	
Lecture-24	Sum of products representation 2 Variable	
Lecture-25	Sum of products representation 3 Variable	
Lecture-26	Sum of products representation 4 Variable	
Lecture-27	Problems on SOP	
Lecture-28	Problems on SOP	
Lecture-29	Multiplexer	
Lecture-30	De Multiplexer	
Lecture-31	De Decoder(3 to8)_	
Lecture-32	Encoder(8 to3)	
	Unit-III Sequential logic circuits	
Lecture-33	Flip-flops –SR	
Lecture-34	JK Flip flop	
Lecture-35	jK Master-Slave Flip-flop	
Lecture-36	D,T Flip flop	

Paper-V (Semester-V)Digital Electonics

Lecture-37	Registers SISO
Lecture-38	PISO Register
Lecture-39	SIPO Register
Lecture-40	PIPO Register
Lecture-41	Universal shift register (IC 7496)
Lecture-42	shift register
Lecture-43	Ring Counter
Lecture-44	Johnson Counter
	Unit-IV Counters and Semicounductor memories
Lecture-45	4-bit Asynchronous (Ripple) counter
Lecture-46	Modulo-N Counter Working truth tables, timing diagram
Lecture-47	Syschronous Counter Working truth tables, timing diagram
Lecture-48	Up/down counters Working truth tables, timing diagram
Lecture-49	Ripple counter IC7493 Working truth tables, timing diagram
Lecture-50	Decade counter IC7490 Working truth tables, timing diagram
Lecture-51	Organization and working of ROM
Lecture-52	Types of ROM's
Lecture-53	Types of PROM
Lecture-54	Types of EPROM
Lecture-55	Types of EEPROM
Lecture-56	Types of FLASH
Lecture-57	Types of RAM
Lecture-58	Static RAM Organization
Lecture-59	Dynamic RAM Organization

- 1) Digital Principles and Applications- Malvino& Leach- TMH.
- 2) Digital Principles and Applications- Ronald J. Tocci- Person Education.
- 3) Text book of Electronics Bsc III year(vol.III)-Telugu Akademi.
- 4) Digital Fundamentals- F.Loyd&Jain-Pearson Education.
- 5) Fundamentals of Digital Circuits- Anand Kumar- PHI.
- 6) Digital Electronics Principles and Integrated circuits-Maini –Wiley India.
- 7) Digital Electronics Gothman

Lecture	Paper -VI (Semester-V)Microprocessor and Applications Topic	Remarks
	Unit-I Introduction to 8085 Microprocessor & its archirecture	
Lecture-1	Introduction to Microcomputer	
Lecture-2	8085 Microprocessor Archirecture	
Lecture-4	CPU	
Lecture-5	Timing & Control Unit	
Lecture-6	Instruction cycle	
Lecture-7	Fetch Cycle	
Lecture-8	Execute cycle(Timing diagram)	
Lecture-9	Machine cycle & Clock states	
Lecture-10	Interrupts - Hardware and Software	
Lecture-11	Address space partitioning	
Lecture-12	Memory mapped I/O	
Lecture-13	I/O mapped I/O	
	Unit-II Instruction set of 8085 microprocessor	
Lecture-14	Data transfer operations	
Lecture-15	Arithmetic operations	
Lecture-16	Logical operations	
Lecture-17	Branch control operations	
Lecture-18	I/O and Machine control operations	
Lecture-19	Stack Operations	
Lecture-20	Subroutines Operations	
Lecture-21	Addressing modes	
Lecture-22	Addressing modes	
Lecture-23	Addressing modes	
	Unit-III Programming of 8085 micriprocessor	
Lecture-24	Assembly language programming addition(8 & 16 bit)	
Lecture-25	ALP-8 bit- subtraction	
Lecture-26	ALP-Multiplication	
Lecture-27	ALP - Division	
Lecture-28	Finding the largest In data array-ALP	
Lecture-29	Finding Smallest number In data array-ALP	
Lecture-30	Program to arrange the given numbers in ascending order	
Lecture-31	Program to arrange the given numbers in descending order	
Lecture-32	Counters	
Lecture-33	Time delays	
Lecture-34	Programs	
Lecture-35	Programs	
	Unit-IV Interfaceing of peripherals	
Lecture-36	Typesof programmable Peripherals	

Paper -VI (Semester-V)Microprocessor and Applications

Lecture-37	Non programmable Peripherals
Lecture-38	interfacing peripherals-8212(I/O port)
Lecture-39	Programmable peripheral interface 8255
Lecture-40	Programmable peripheral interface 8255
Lecture-41	D/A Converters binary weighted
Lecture-42	D/A Converters Ladder network
Lecture-43	A/D Converters (Dual slope)
Lecture-44	A/D Converters (Successive approximation)
Lecture-45	Closed loop process
Lecture-46	open loop process
Lecture-47	Control systems(concept only)
Lecture-48	Stepper motor control

- 1) Microprocessor Architecture and Programming- Ramesh S. Goanker Penram.
- 2) Fundamentals of Microprocessors and Micro controllers B. Ram, Dhanpat rai & Sons.
- 3) Text book of Electronics B.Sc III year(Vol.III)-Telugu Academy.
- 4) Introduction to Microprocessor- Aditya P. Mathur- TMH.
- 5) Microprocessor Lab Premier- K.A. Krishnamurthy.

Lecture No	Paper-VII (Semester-V) Digital Communication		
Lecture No	Topic	Remarks	
Lecture1	Unit-I Signals Analysis Complex fourier spectrum		
Lecture1	Fourier Transform		
Lecture3 Lecture4	Properties of Fourier transform		
Lecture5	Sampling theorem		
	Random signals		
Lecture6	Noise		
Lecture7	Correlation		
Lecture8	Power spectrum		
LoctureO	Unit-II Digital Communication System		
Lecture9	A/D Converter		
Lecture10	D/A Converter		
Lecture11	Coded Communication		
Lecture12	AM (Amplitude modulation)		
Lecture13	PWM(Pulse wiuth modulaltion)		
Lecture14	PPM(Pulse position modulation)		
Lecture15	PCM(Pulse Coded modulation)		
Lecture16	Delta modulation		
Lecture17	Adaptive Delta modulation		
Lecture18	Quantization		
Lecture19	noise Quantization		
Lecture20	Noice Consideration		
Lecture21	Digital transmission		
Lecture22	Reception		
Lecture23	Timing		
Lecture24	Base Band Systems		
Lecture25	ASK(Ampitude shift keying) Generation		
Lecture26	ASK(Ampitude shift keying) Detection		
Lecture27	FSK(Frequency shift keying)Generation		
Lecture28	FSK(Frequency shift keying) Detection		
Lecture29	PSK(Phase shift keying)Generation		
Lecture30	PSK(Phase shift keying)Detection		
Lecture31	QAM		
	Unit-III Error Detection and Coding		
Lecture32	Parity Check		
Lecture33	CRC Coding		
Lecture34	CRC Coding		
Lecture35	Hamming distance		
Lecture36	Hamming Codes		

Lecture37	Cyclic Codes
Lecture38	Cyclic Codes
Lecture39	Line Synchronization Codes
Lecture40	Manchester Code
Lecture41	NRZ Coding
Lecture42	Walsh codes
	Unit-IV Case studies
Lecture43	Paging system
Lecture44	Paging system
Lecture45	Cellular telephone
Lecture46	Global positioning Satellite
Lecture47	Global positioning Satellite
Lecture48	Global positioning Satellite
Lecture49	Facsimile
Lecture50	Videotext

Reference BooKs:

- 1) Analog and Digital Communication systems –M.S.Roden, 3rd Edition,
- 2) Modern Digital and Analog Communication Systems-B.P.Lathi.
- **3)** Communication Techniques for digital and Analog signals M.Kanefsky, John Wiley and Son.
- 4) Telecommunication-T.H.Brewster, McGraw Hill.
- 5) Principles of Digital communication, Das Chatterjee and Mallick, Wiley Eastern Ltd.

	Paper-VIII(A) Semester-VI 8051 Microcontroller and Applications		
Lecture No	Торіс	Remarks	
	Unit-I The Microcontroller 8051:		
Lecture1	Overview and block diagram of 8051		
Lecture2	Architecture of 8051		
Lecture3	Pin Diagram of 8051		
Lecture4	Data types and directives		
Lecture5	Memory Organization		
Lecture6	Register bank		
Lecture7	Special function registers		
Lecture8	I/O port organization		
Lecture9	Interrputs modules		
Lecture10	Timer/Counter modules		
	Unit - II Instruction set of 8051 microcontroller		
Lecture11	Data tramsfer Instruction		
Lecture12	Arithmetic Instruction		
Lecture13	Logical Instruction		
Lecture14	Single Bit Instruction		
Lecture15	Jump Instructions		
Lecture16	loop and CALL Instructions and their usage		
Lecture17	Addressing modes- Imediate		
Lecture18	Register Addressing modes		
Lecture19	Direct Addressing modes		
Lecture20	Indirect Addressing modes		
Lecture21	Absolute addressing		
Lecture22	Relative addressing		
Lecture23	Indexed Addressing		
Lecture24	Accessing memory using various addressing modes		
	Unit-III Programming example of microcontroller 8051		
Lecture25	ALP Addition Programming		
Lecture26	ALP Subtraction Programming		
Lecture27	ALP Division Programming		
Lecture28	Picking the smallest number Among a given set of numbers		
Lecture29	Picking the largest number Among a given set of numbers		
Lecture30	Arranging a given a set of numbers in ascending order		
Lecture31	Arranging a given a set of numbers in Descending order		
Lecture32	Subroutines		
Lecture33	I/O Programming Bit manipulation		
Lecture34	Accessing specified port terminal		
Lecture35	Generating wave forms		
Lecture36	Timer/Counter		

Lecture37	Programming in 8051
Lecture38	Programming 8051 timers
Lecture39	Basic registers and timers
Lecture40	Timer0, Timer1 registers,
Lecture41	TMOD register
Lecture42	TCON register
Lecture43	Timer mode 01
Lecture44	Mode02 programming
Lecture45	Counter mode programming
Lecture46	Program to generate time delay
	Unit-IV Serial Communications
Lecture47	Serial communication
Lecture48	Serial communication Types
Lecture49	Serial communication modes
Lecture50	Serial communication Protocols
Lecture51	Data transfer rate
Lecture52	Serial communication program
Lecture53	SBUF registers
Lecture54	SCON registers
Lecture55	RS232 standards
Lecture56	Programming timer
Lecture57	Interrupts
Lecture58	Application of Micro controller
Lecture59	Displaying information on a LCD
Lecture60	Interfacing a keyboard
Lecture61	Interfacing a temperature sensor
Lecture62	Interfacing of DAC 0808 to microcontroller
Lecture63	Interfacing of ADC 0804 to microcontroller
Lecture64	Seven segment LED

- The 8051 Microcontrollers and Embedded Systems Muhammad AliMazidi and Janice gillipsieMazidi- Pearson Education Asia, 4th Reprint, 2002.
- 2. Text book of Electonics BSC III year(vol.III)-Telugu Akademi.
- **3.** Fundamentals of Microcontroller B. Ram
- **4.** The 8051 Microcontroller architecture, programming and applications Kennth J. AyalaPenran International Publishing 1995.
- 5. Micro-controller Theory and Applications-Ajay. V.Deshmukh.
- 6. Micro-Controller 8051 D. Karuna Sagar, Narosa