Unit			Total
No	PAPER – III BT 103 BIOCHEMISTRY	Hr	Hr
1	CHEMISTRY OF BIOMOLECULES		
	a Carbahudratas		
	Classification structure configuration conformation	2	
	Classification, structure, configuration, conformation Stability, formation of glycosidic band, disascharidos &	1	
	Oligosaccharides	-	
	 Polysaccharides: structural (cellulose, chitin) storage (starch, glycogen, 		
	insulin).	1	
	Hemicelluloses		
	Liginins, Pectins	1	
	Glycoso-amino-glycans	1	15
	Blood group substances, glycoproteins, proteoglycans & bacterial cell	1	
	wall polysaccharides (peptidoglycans).	2 1⁄2	
	Amino acids-		
	Classification, characteristics of amino acids. Essential & Non essential		
	amino acids.	1 1/2	
	Proteins-	- /2	
	 Classification, Structural organization of proteins – primary, secondary, testions sustained. 	1 1⁄2	
	tertiary, quaternary		
	Kamchandran's plot.	1	
	 Lipius- Structure properties & classification of lipids fatty acids. Perphyrins 	1 ½	
	• Structure, properties & classification of lipius, fatty actus. Por phyrins		
2	CHEMISTRY OF BIOMOLECULES – II		
	Nucleic Acids: Structure of purines	2	
	pyrimidine's, nucleosides and nucleotides.	1	
	Watson & Crick model of DNA	1	
	Different forms of DNA		
	5Types of DNA	2 ½	13
	Circular DNA & super coiling.	1½	
	• Types of RNA. Structure of t-RNA.	2	
	Denaturation & renaturation of DNA		
	Melting Curves. Calculation of Tm	1	
	Problems	–	
3	BIOENERGETICS		
	Law of thermodynamics	1 1⁄2	
	 Biological oxidation, Gibbs energy, free energy changes 	1 ½	
	redox potential & phosphate potential.	1	17
	High energy compounds	1	
	Glycolytic Pathway	1	
	TCA Cycle	1	
	Oxidative Phosphorylation	1	
	Photophosphorylation	1	
	Electron Transport Chain	1	
	GIYOXYIATE LYCIE	1	
	Pentose Phosphate Pathway	1	

Gluconeogenesis	1½	
PhotosynthesisPhotosystems. Light & Dark Phases.	1 1/2	
• C3 & C4 Pathways	1	
CAM Pathways	1	
Bioluminescence	1	
Fatty acid Metabolism		
-β- Oxidation of fatty acids		
ENZYMOLOGY		
Introduction –	1/2	
special characteristics of enzymes	1	
co-factors	1	
specificity of enzymes.	1	
 Nomenclature & classification of enzymes 	1	
 Steady state concept – Importance of Km &Vmax. 	1½	15
Michaelis-Menton equation-		
Factors affecting the rate of the reaction	1½	
Enzyme activation.	1	
Types of Enzyme inhibitions. Enzyme inhibitors	1½	
Properties of enzymes:		
isolation methods& purifications.	1 1⁄2	
Regulation- Hill equation,	1	
cooperativitiy, Multiple sites on an enzyme.	1	
	1½	
		6.0
		60

Unit		Instruction	Total
No	PAPER – III BT 203 IMMUNOLOGY	Hr	Hr
1			
	BASICS OF IMMUNOLOGY, IMMUNITY		
	Introduction		
	Immunlogy, Immunity, Immune System	1	
	Types of Immunity-		
	Innate Immunity	2	
	Acquired Immunity	2	
	Cells of the Immune System		
	B & T Lymphocytes, Natural Killer cells, Lymphocytes, Dendritic cells		
	Leucocytes – Granulocytes and Agranulocytes	2	17
	T-cell sub-sets. The Antigen Presenting Cells	1 1%	
	- Organs of the Jacours System (± /2	
	Organs of the Immune System : Deinement and engage		
	- Primary lymphoid organs	1 1/	
	Bone marrow and Thymus	1 72	
	- Secondary lymphoid organs		
	lymph nodes, spleen		
	Mucosal-associated lymphoid tissue- Peyers patches, Tonsils	1	
	Antigens		
	- Introduction		
	Immunogenicity ,Antigenicity,	1½	
	- Immunogenicity versus Antigenicity		
	Factors that influence immunogenicity	1	
	 Haptens and the study of Antigenicity 	1	
	 Epitopes - Properties of B-cell epitopes and T-cell epitopes, 	1 1⁄2	
2			
	Basic structure of Immunoglobulins	1	
	Immunoglobulin domains-variable region and constant region domains.	1	
	Immunoglobulin classes		13
	Types- IgG, IgM	1	
	IgA, IgD and IgE	1½	
	functions of Ig classes	1	
	Antigenic determinants on immunoglobulins	1	
	 Antigen-antibody reactions – 		
	Precipitation, Agglutination	1	
	RIA	1	
	ELISA- Sandwich ELISA. Dot ELISA	1	
	Western Blot Immunoprecipitation Immunoflourescence	1 ½	
	Monoclonal & polyclonal Antibodies		
	Hybridoma Technology- Formation and selection of hybrid cells Production	1	
	of Monoclonal Antibodies and their clinical uses	1	
		-	
		1	

3	UNIT III MAJOR HISTOCOMPATIBILITY COMPLEX (MHC).	1 ½	15
		1 ½	
	• General organization and inheritance of MHC; MHC Haplotypes.	1 ½	
	• The structure of -	1	
	MHC class-I	1	
	MHC class-II molecules	2	
	Organization of MHC class I and class II genes	1	
	Peptide binding of MHC molecules.	1	
	Antigen processing pathways	1 1⁄2	
	Polymorphism of MHC class I	1	
	Polymorphism of MHC class II molecules	1	
	• The role of HLA typing in organ transplantation		
	Cellular distribution of MHC molecules		
	MHC molecules and immune responsiveness		
4			
	UNIT IV THE HUMORAL AND CELL-MEDIATED IMMUNE RESPONSES.		
	 The structure and functions of T-cell receptors (TCR) 	1	
	The TCR-peptide-MHC tri-molecular complexes	1 1⁄2	
	• B-cell activation and proliferation by Thymus independent and Thymus	1 1⁄2	
	dependent antigens		
	In vivo sites for induction of humoral response	1	17
	B-cell differentiation	1	
	 class-switching and generation of plasma cells and memory cells. 	1	
	Cell-mediated immune response:		
	General properties of effector T-cells	1	
	Direct cytotoxic response	1	
	Experimental assessment of cell-mediated cytotoxicity	1	
	Disorders of immune systems	1	
	Hypersensitivity	1	
	Immunosuppression	1	
	Transplantation	1	
	Vaccines conventional subunit & recombinant	1	
		1	
	Tumor Immunology	1	
	- Tunior minunology		
			62

Unit	BT 302 BIOPROCESSTECHNOLOGY	Instruction	Total
No		Hr	Hr
1	FUNDAMENTALS OF BIOPROCESS ENGINEERING.		
	Introduction to bioprocess engineering	1	
	Fermentation, Fermenter		
	Bioprocess kinetics : Quantitative description of cellular process	1	
	Bioprocess kinetics : Quantitative description of cellular process	1	
	Kinetic modeling	1	13
	Model structures-types of systems	2	
	 Material balances – concepts of material balance in different systems 	2	
	Energy balances	1	
	 Mass balances for ideal bioreactors- Laws of Conservation of mass 	1	
	Mass balance equation	1	
	Problems	1	
2			
	UPSTREAM PROCESS		
	 Designing of bioreactors 	1	
	Bioreactor types	1	
	Continuous Stirred tank Bioreactor		18
	Air Lift Bioreactor- Two types 1) Internal loop 2) External loop	1	
	Bubble column Eluidized bed Bioreactor	1	
	Packed bed Bioreactor Photobioreactor	1	
	 design configurations, design features, Batch and Continuous 	1	
	Transport phenomenon in bioprocess system:		
	Mass transfor	1	
		1	
		1	
	Feat transfer	1	
	Fourier's law for heat- in different systems	1	
	• Oxygen transfer – Equation	1	
	Oxygen transfer in Lab and Pilot system	1	
	• Shear stress effects and energy inputs in bioreactors.	1	
	Sterilization of media	1	
	Design of sterilization process (batch and continuous)	1	
	sterilization of bioreactor, feed and liquid waste	1	
	sterilization of air, exhaust air	1	
2			
3	DOWNSTREAM PROCESS AND PRODUCT RECOVERY.		
	Downstream processing Introduction A multi-stage operation	1	
	Downstream processing.introduction, A multi stage operation.	1	
	Controperations: solid liquid separation: intration, centrilugation	1	15
	Filter alus, nocculation, rodin separation	1	1.5
	Recovery or intracential components: iviechanical	1	
	Non-mechanical (chemical and enzymatic methods).	1	
	Concentration of biological products : Evaporation, liquid-liquid autraction	-	
		1	
	Aqeous two phase system (ATPS) membrane filtration	1	
	Pervaporation, perstraction, precipitation, adsorption etc.	1	
	Purification of product: chromatography methods: Size exclusion		
	chromatography	1	
	Ion exchange	-	

	column-chromatography	1	
	 chromato-focussing, affinity chromatography 	1	
	Product formulation: Crystallization	1	
	Drying, lyophilization.	1	
	Process integration	1	
4	BIOPROCESS CONTROL MEASUREMENT AND AUTOMATION.		
	 Classes of sensors: Introduction In-line, on-line and off-line sensors. Physical and chemical sensors for media Physical and chemical sensors for gases Instrumentation and principles for measurement of temperature Instrumentation and principles for measurement of flow rate, pressure Instrumentation and principles for measurement of agitation shaft power Instrumentation and principles for measurement of foam sensing, biomass Instrumentation and principles for measurement of dissolve oxygen, pH Instrumentation and principles for measurement carbon dioxide Automation and control system: manual control, automatic control PID control and complex control systems. Application of computers in bioprocess engineering: Data logging analysis and control. Process economics : Cost benefit analysis 	1 1 1 1 1 1 1 1 1 1 1 1 1 1	14
			60

Unit	BT 401 INDUSTRIAL BIOTECHNOLOGY	Instruction	Total
No		Hr	Hr
1	BIOPROCESS & FERMENTATION TECHNOLOGY		
	 Introduction of Industrial biotechnology & bioprocess engineering 	1	
	Fermentation design- overview of aerobic	1	
	Anaerobic fermentation process.	1	
	 Fermentation process and factors affecting fermentation process. 	1	
	Bioreactor: Bioreactor types		19
	Continuous Stirred tank Bioreactor	1	
	Air Lift Bioreactor- Two types 1) Internal loop 2) External loop	1	
	Bubble column, Fluidized bed Bioreactor	1	
	Packed bed Bioreactor, Photobioreactor	1	
	• Design- design configurations, design features, Batch and Continuous	1	
	 kinetics & Transport phenomenon in bioprocess system 	1	
	Kinetic modeling Model structures- Material balances	1	
	Mass transfer	1	
	Heat transfer	1	
	Oxygen transfer		
	 Shear stress effects and energy inputs in bioreactors. 	1	
	Sterilization of media	1	
	Sterilization of air	1	
	Design of Fermentation media. Substrates used as Carbon	1	
	Substrate used as nitrogen sources	-	
2	ISOLATION, SELECTION AND PRESERVATION OF INDUSTRIAL		
	MICROORGANISMS		
	 Industrial cultures – Bacteria, Algae 	1	
	Fungi, Actinomycetes.	1	
	 Primary and secondary screening of microorganisms for industrial 		08
	products.	1	
	Isolation and Screening	1	
	 Preservation of microorganisms for industrial products- types 	1	
	Strain development – mutation	1	
	Selection & Recombination	1	
	Recombination techniques	1	
3	DOWNSTREAM PROCESS AND PRODUCT RECOVERY.		
	Downstream processing:Introduction, A multi stage operation.	1	
	Unit operations: solid liquid separation: filtration, centrifugation		17
	Filter aids, flocculation, foam separation	1	1/
	Recovery of intracellular components: Mechanical	- 1	
	Non-mechanical (chemical and enzymatic methods).	1	
	Concentration of biological products : Evaporation, liquid-liquid	-	
	extraction	1	
	Aqeous two phase system (ATPS) membrane filtration	1	
	Pervaporation, perstraction, precipitation, adsorption	1	
	Purification of product: Chromatography	=	

	Chromatography methods: Size exclusion chromatography	1	
	Ion exchange	1	
	column-chromatography	1	
	Chromato-focussing, affinity chromatography	1	
	 Immobilized ion metal chromatography, Resins 	1	
	Product formulation: Crystallization	1	
	Drying, lyophilization	1	
	Process integration	1	
4			
	PRODUCTION OF MICROBIAL PRODUCTS		
	Organic acids – citric acid	1	
	Acetic acid	1	
	Gluconic acid	1	
	Amino acids – glutamic acid	1	
	Alcohols & beverages – ethanol	1	16
	Beer, wine Production	1	
	Enzymes – proteases	1	
	Lipases	1	
	Cellulases	1	
	Pectinases	1	
	Antibiotics – penicillin	1	
	Erythromycin	1	
	Biosensors		
	 Vaccines –hepatitis-B, polio 		
	• Vitamins – B 12	1	
	Dairy products – cheese, yoghurt	1 1	
			60

Teaching	PAPER – I BT	101 CELL BIOLOGY
hours		
UNIT I	INTERNAL ORGANISATION OF CELL	
Period 1	Introduction to cell biology	
Period 2	Membrane structure – lipid bi layer and membrane proteins	Models of membrane structure Phospholipids, glycolipids, cholesterol Peripheral and Integral membrane proteins, Glycoclyx
Period 3	Electric properties of membrane	
Period 4	Transport across membranes – Passive transport, , carrier proteins Ion channels	Passive Diffusion, Fecilitated diffusion- Glucose transporters across erythrocytes Voltage gatedion channel: Na , KCachannel Ligandgated ion channel: Nicotinic Acetyl choline receptor of muscle cells Mechano gated ion channel
Period 5	Active transport: Na+ Ka+ pump ATPase, ABC transportors,	Sodium potassium pump conformational changes, Calcium ATPase, H ⁺ /K ⁺ ATPase ABC transporte- CFTR
Period 6	ionic gradient	Sodium glucose transport- Symport Na⁺-Ca⁺antiport
Period 7	Intra cellular compartmentalization – Cytosol, mitochondria, chloroplast	Cytosol chemical composition Mitochondria and chloroplast functions
Period 8	endoplasmic reticulum, peroxisome	Organinzation of Endoplsmic reticulum and functions Peroxisomes structure and functions
Period 9	lysosomes, endosomes	Lysosomes structure and functions Endosomes types and functions
Period 10	Transport of molecules between nucleus and cytosol	Nuclear pore complex, Nuclear localization signal and export signal

Period 11	Transport into mitochondria, Transport into	Tim, Tom proteins, Pre sequences Matrix
	chloroplast	processing peptidase, chaperons
		Toc, Tic, Transit peptide, Guidance complex
		Stromal processing pentidase
Period 12	endocytosis and exocytosis	Phagocytosis, Receptor mediated endocytosis
		Clathrin independent pathway
Period 13	Protein sorting	Singalpeptide of Endoplasmic reticulum
		Signal Peptide of Golgi complex
		Glycosylation
		Mannose 6 phosphate
Period 14	Multi drug resistant efflux forms	ABC, MFS RND Superfamily
Period 15	Structure and functions of mitochondria	Structure, electron transport chain and
		chemiosmotic coupling
	Structure and function of chloroplast	Structure and Photosysnthesis
UNIT II	CELL COMMUNICATION	
Period 1	Overview of extracellular signaling	
Period 2	Basic characteristics of Paracrine	
Periou 2	endocrine, autocrine systems	
Period 3	Tight junctions	
T CHOU S		
Deried 4	Can junctions	
Period 4	Gap junctions	
Period 5	second messengers and their role in signal	
Period 6	lipid derived second messengers	
	(phosphatidyl inositol derived second	
	messenger) & IP3.	

Period 7	Role of calcium as second messenger	
Period8	Cell surface receptors in signal transduction	
Period9	G-protein coupled receptor – structure and function	
Period 10	Ion channel receptors.	
Period 11	Tyrosine kinase linked receptors	
Period 12	Receptors with intrinsic enzyme activity (RTK)	
Period 13	Interaction and regulation of cell signaling pathways	
Period 14	Interaction and regulation of cell signaling pathways	
UNIT III	CELL CYCLE AND CELL DIVISION	
Period 1	Introduction to cell cyle	
Period 2	Components in cell cycle control - Cyclin, CDKs	
Period 3	Check points in cell cycle	
Period 4	Intracellular control of cell cycle events	
Period 5	phase dependent cyclic CDK complexes eg. Yeast.	
Period 6	Abnormalities in Cell Cycle – Cancer	
Period 7	Mechanics of Cell Division- An over view of M-Phase	
Period 8	Different stages of mitosis	Chain termination and fluorescent labeled dyes
Period 9	Cohesins and Condensins in chromosome segregation	Components, Methodology, Primer design
Period 10	Microtubules in spindle assembly	Types and Applications
Period 11	Structure of kinetoshore	
Period 12	centrosomes and its functions, Sister Chromatid separation	
Period 13	Cytokinensis actin & myosin in the generation of contractile ring	
Period 14	Meiosis – Significance, Chiasma formation - Synaptonemal complex	

Period 15	Recombination during meiosis -
	Recombination
	nodules
UNIT IV	UNIT 4 CELL DEATH PATHWAY
Period 1	Introduction to Necrosis
Period 2	Senescence
Period 3	Apoptosis - Programmed cell death
Period 4	Mechanisms of apoptosis
Period 5	Apoptosis triggered by internal signals
Period 6	Apoptosis triggered by external signals
Period 7	Apoptosis in cancer
Period 8	Apoptosis immune system,
Period 9	Apoptosis organ transplants
Period 10	Apoptosis organ transplants
Period 11	Apoptosis in plants
Period 12	Apoptosis in plants
Period 13	
Period 14	
Period 15	

Class Unit & Topic UNIT 1: GENERAL CHARACTERS OF MICROORGANISMS 1 The concept of Microbial origin of Fermentations Historical developments in Microbial Biotechnology. 2 3 Microscopy 4 Types of Microscopy 5 Types of Microscopy 6 **Classification of Bacteria** 7 Structure and general characters of Bacteria Classification, Structure and general characters Archaea 8 9 Classification, Structure and general characters Fungi 10 Classification, Structure and general characters Algae Nutrition in Microorganisms 11 12 Assimilation of nutrients Nutritional groups of microorganisms 13 14 Microbiological media and their applications 15 Microbiological media and their applications **UNIT 2: VIRUSES AND THEIR CHARACTERS** 1 Classification of viruses 2 Classification of viruses 3 General Characters of viruses General Characters of viruses 4 5 Structure and replication of Bacteriophage (T2) 6 TMV 7 Measles 8 Measles 9 HIV HIV 10 11 SV40 Prions – Kuru 12 13 Bovine Spongy Encephalopathy 14 Methods of cultivation of viruses 15 Importance of viruses in biotechnology **UNIT 3: MICROBIOLOGICAL TECHNIQUES** 1 Concept of sterilization. 2 Methods of sterilization 3 Methods of sterilization 4 Sterilization techniques used in Industries 5 Sterilization techniques used in Industries 6 Kinetics of thermal death of cells & spores 7 Concept of pure culture 8 Methods of pure culture development. 9 Methods of preservation of microbial cultures 10 Microbial growth and growth curve 11 Microbial growth and growth curve 12 Exponential growth

PAPER – IV BT 104 MICROBIOLOGY

13	Synchronous growth
14	Methods of measurement of growth
15	Methods of measurement of growth
	UNIT 4 : RECOMBINATION IN BACTERIA AND VIRUSES
1	Transformation : Competence factors
2	Mechanism of transformation
3	mapping genes by transformation
4	Conjugation
5	Structure of F plasmid, Mechanism of transfer of F plasmid. Hfr,
6	Mechanism of integration of F plasmid into bacterial chromosome
7	Circularization of chromosome
8	Conjugation mapping – different methods
9	Transduction
10	Generalized transduction
11	Lysogenic cycle
12	lytic cycle
13	Specialized transduction – structure of λ phage
14	Mechanism of integration λ phage.
15	Gene mapping by transduction

PAPER IV :BT 204 BIO-STATISTICS AND ANALYTICAL TECHNIQUES

Class	Unit & Topic
	UNIT 1 : DESCRIPTIVE STATISTICS
1	Sampling procedure, homogenization of samples, samples size
2	Measurement of averages and variation
3	Measure of central values - Mean
4	median
5	• mode
6	Measures of dispersion - range
7	mean deviation
8	standard deviation
9	coefficient of variation
10	Graphical representation of Data
11	Graphical representation of Data
12	Probability, Concept of Probability
13	Binomial distribution
14	Normal distribution
15	Poisson distribution & their applications
	UNIT - 2 QUALITATIVE & QUANTITATIVE VARIABLES
1	Concept of Test of hypothesis
2	Null hypothesis
3	Alternative hypothesis
4	Chi square test & its applications
5	Chi square test & its applications
6	Analysis of Variance and Co-variance
7	One-Way ANOVA
8	Two way ANOVA
9	Large Sample Tests- Z-test of Means & Proportions

10	Large Sample Tests- Z-test of Means & Proportions
11	Small sample test
12	T-test for Means
13	Paired T-test
14	• F-test
15	Simple regression & correlation
	UNIT- 3 BASIC TECHNIQUES
1	Dialysis
2	Ultrafiltration
3	Spectroscopy Techniques – UV & Visible
4	Raman Spectroscopy
5	Fluorescence
6	MS (mass spectra)
7	NMR, PMR, ESR
8	Plasma Emission spectroscopy
9	API-electrospray & MADI-TOF
10	Types of centrifuge - Microcentrifuge
11	High speed & Ultracentrifuges
12	 Units of radioactivity; Measurement of radioactivity
13	Geiger-Muller counter
14	Solid & Liquid scintillation counters
15	 Applications of isotopes in Biotechnology
	UNIT 4 CHROMATOGRAPHY TECHNIQUES
1	TLC and Paper chromatography;
2	Chromatographic methods for macromolecule separation - Gel permeation
3	Ion exchange chromatography
4	Hydrophobic chromatography
5	Reverse-phase chromatography
6	Affinity chromatography
7	HPLC and FPLC
8	Criteria of protein purity
9	Electrophoretic techniques
10	Theory and application of Polyacrylamide gel electrophoresis
11	Theory and application of Agarose gel electrophoresis
12	Capillary electrophoresis; 2D Electrophoresis
13	Disc gel electrophoresis; Gradient electrophoresis
14	Pulsed field gel electrophoresis
15	Protein crystallization

вт	301	BIOINFORMATICS	
<u> </u>			

Class	Unit & Topic
	UNIT 1: FOUNDATIONS OF COMPUTATIONAL BIOLOGY
1	Computer hardware & software.
2	 Introduction to computer languages – C, C++, JAVA, PERL
3	Foundations to bioinformatics – History, overview
4	Foundations to bioinformatics –applications
5	Bioinformatics data – nucleic acid sequence
6	protein sequence
7	Bioinformatics databases –DNA databases
8	RNA databases
9	Protein databases
10	Drug databases
11	Bioinformatics tools and Resources
12	Bioinformatics web- portals
13	free online tools
14	downloadable free tools
15	software packages
	UNIT 2: COMPARISON METHODS IN BIOINFORMATICS
1	Basics of sequence alignment -
2	• Dot-matrix comparison match, mismatch, gaps, scoring alignments, gap penalty,
	protein vs DNA alignment.
3	• Dot-matrix comparison match, mismatch, gaps, scoring alignments, gap penalty,
	protein vs DNA alignment.
4	Pairwise alignment algorithms – Needleman and Wunch algorithm, Smith Watermann
	algorithm.
5	Pairwise alignment algorithms – Needleman and Wunch algorithm, Smith Watermann
	algorithm.
6	Pair wise alignment based heuristic algorithms - Blast algorithm, FASTA algorithm
7	Pair wise alignment based heuristic algorithms - Blast algorithm, FASTA algorithm
8	Pair wise alignment based heuristic algorithms - Blast algorithm, FASTA algorithm
9	Multiple sequence alignment algorithms – progressive alignment algorithms, Iterative
10	alignment algorithms
10	 Multiple sequence alignment algorithms – progressive alignment algorithms, iterative alignment algorithms
11	 Multiple sequence alignment algorithms – progressive alignment algorithms, Iterative
	alignment algorithms
12	 Multiple sequence alignment based databases searching: Consensus sequence,
	patterns, profiles.
13	PAM and BLOSUM matrices
14	PAM and BLOSUM matrices
15	PAM and BLOSUM matrices
	UNIT 3: GENOMIC AND PROTEOMIC APPLICATION OF BIOINFORMATICS
1	Bioinformatics for genome sequencing

2	EST Clustering and analyses
3	EST Clustering and analyses
4	 Finding genes in prokaryotic and eukaryotic genomes: open reading frames, contents, signals.
5	 Finding genes in prokaryotic and eukaryotic genomes: open reading frames, contents, signals
6	 Finding genes in prokaryotic and eukaryotic genomes: open reading frames, contents, signals
7	Bioinformatics for Genome maps and markers
8	Bioinformatics for Genome maps and markers
9	Bioinformatics for Genome maps and markers
10	Bioinformatics for understanding Genome variation
11	Bioinformatics for understanding Genome variation
12	Bioinformatics for understanding Genome variation
13	Protein structure prediction and classification
14	Protein structure prediction and classification
15	Protein structure prediction and classification
	UNIT - 4: APPLICATIONS OF BIOINFORMATICS
1	 Medical application of Bioinformatics – disease genes, drug targets,
	pharmacogenomics, drug designing
2	 Medical application of Bioinformatics – disease genes, drug targets,
	pharmacogenomics, drug designing
3	 Medical application of Bioinformatics – disease genes, drug targets,
	pharmacogenomics, drug designing
4	 Medical application of Bioinformatics – disease genes, drug targets,
	pharmacogenomics, drug designing
5	 Medical application of Bioinformatics – disease genes, drug targets,
	pharmacogenomics, drug designing
6	Structural biology - Homology modeling
7	Structural biology - Homology modeling
8	Structural biology - Homology modeling
9	 Bioinformatics for micro array designing and transcriptional profiling
10	 Bioinformatics for micro array designing and transcriptional profiling
11	 Bioinformatics for micro array designing and transcriptional profiling
12	Bioinformatics for micro array designing and transcriptional profiling
13	Bioinformatics for phylogenetic analysis
14	Bioinformatics for phylogenetic analysis
15	Bioinformatics for phylogenetic analysis

BT 404 NANOBIOTECHNOLOGY

Class	Unit & Topic	
	UNIT - I BASICS of BIONANOTECHNOLOGY	
1	Introduction to nanomaterials	
2	Structure and functional properties of Biomaterials	
3	Structure and functional properties of Biomaterials	
4	Role of size in nanomaterials, nanoparticles, semiconducting nanoparticles, nanowires,	
	nanoclusters, quantum wells	
5	Role of size in nanomaterials, nanoparticles, semiconducting nanoparticles, nanowires,	
	nanoclusters, quantum wells	

6	Role of size in nanomaterials, nanoparticles, semiconducting nanoparticles, nanowires, nanosluttors, quantum walks
7	Role of size in panomaterials, panoparticles, semiconducting panoparticles, panowires
,	nanoclusters, quantum wells
8	Water environment and their importance in bionanomachines
9	 Overview of natural Bionanomachines: Thymidylate Sythetase , ATP synthetase, Actin and myosin
10	Overview of natural Bionanomachines: Thymidylate Sythetase , ATP synthetase, Actin
	and myosin
11	Overview of natural Bionanomachines: Thymidylate Sythetase , ATP synthetase, Actin
	and myosin
12	 Overview of natural Bionanomachines: Thymidylate Sythetase , ATP synthetase, Actin and myosin
13	Quantum Dot structures and their integration with biological structures
14	Quantum Dot structures and their integration with biological structures
15	Quantum Dot structures and their integration with biological structures
	UNIT 2 NANO-BIOSENSORS
1	Biosensors
2	Biosensors
3	Biosensors
4	
5	
6	 Definition and classification – potential based sensors; electrochemical sensors;
7	acoustic/mechanical sensors; thermal and phase transition sensors; sensors in modern
8	medicine
9	
10	
11	
12	 Biomembrane based sensors. Diagnostic imaging techniques (digital imaging; molecular imaging).
13	Biomembrane based sensors. Diagnostic imaging techniques (digital imaging; molecular
	imaging).
14	Nanoengineered biosensors
15	Nanoengineered biosensors
	UNIT 3 NANOMEDICINE AND NOVEL DRUG DELIVERY SYSTEMS
1	Application of nano materials in medicine
2	Nanoparticles as carrier for genetic material, neuroscience, cancer therapy,
	cardiovascular medical devices
3	Nanoparticles as carrier for genetic material, neuroscience, cancer therapy,
	cardiovascular medical devices
4	Tissue regeneration (tissue engineering)
5	Tissue regeneration (tissue engineering)
6	Tissue regeneration (tissue engineering)
7	Dendrimers as nanoparticulate drug carriers
8	Dendrimers as nanoparticulate drug carriers
9	Dendrimers as nanoparticulate drug carriers
10	Drug delivery systems –polymer drug conjugates; polymeric micelles; liposomes
11	Drug delivery systems –polymer drug conjugates; polymeric micelles; liposomes
12	Drug delivery systems –polymer drug conjugates; polymeric micelles; liposomes
13	Ivanoparticles for drug delivery
14	Ivanoparticles for drug delivery
15	Nanoparticles for drug delivery
	UNIT 4 APPLICATIONS OF NANOBIOTECHNOLOGY

1	Bio-Barcode

Teaching	Intellectual property rights (IPR)
hours	

2	 Assay Understanding of antibody based diagnostic techniques (immunoassay) - micro
	and nano immunosensors
3	 Assay Understanding of antibody based diagnostic techniques (immunoassay) - micro
	and nano immunosensors
5	•
6	
7	
8	 Nanotechnology in agriculture – Fertilizer and pesticides
9	
10	
11	
12	Designer proteins, Peptide nucleic acids
13	Designer proteins, Peptide nucleic acids
14	Future of Bionanotechnology
15	Future of Bionanotechnology

UNIT I	Intellectual property rights
Period 1	Classification and forms.
Period 2	Rationale for protection of IPRs
Period 3	Importance of IPRs in the fields of science and technology
Period 4	Patents – Concepts and principles of patenting – Patentable subject matter
Period 5	Procedure of obtaining patents
Period 6	Rights of patents
Period 7	Infringement of patent rights
Period 8	Remedies for infringement of patent rights
Period 9	Plant and Animal variety protection act
Period 10	The strategy of protecting plants and animals
Period 11	Recent Developments in Patent System
Period 12	Patentability of biotechnological inventions
Period 13	IPR issues in Indian Context Role of patent in pharmaceutical industry
Period 14	Case studies Rice, Haldi, neem, etc
Period 15	Patentability and emerging issues
UNIT II	ETHICAL ISSUES
Period 1	Introduction to Ethics
Period 2	Causes of unethical acts
Period 3	Causes of unethical acts Professional ethics
Period 4	Professional ethics professional conduct
Period 5	professional conduct

Period 7	ethical dilemmas	
Period 8	Teaching ethical values to scientists	
Period 9	Good laboratory practices	
Period 10	Good laboratory practices	
Period 11	Good manufacturing practices	
Period 12	Good manufacturing practices	
UNIT III	UNIT 3 QUALITY MANAGEMENT	
Period 1	Introduction to QUALITY MANAGEMENT	
Period 2	Basic standards	
Period 3	Need of standards	
Period 4	Analytical standards	
Period 5	Reference materials/controls (positive & negative	
Period 6	matrix effect in standards	
Period 7	Biological standards	
Period 8	Microbial cell lines and standards	
Period 9	Quality Management, Quality system	
Period 10	Types of Quality systems ISI, ISO, HACCP	
Period 11	HACCP , USFDA 21 CFR	
Period 12	Inspection and testing	
Period 13	Packaging, Preservation of the material	
Period 14	Internal quality audits,	
Period 15	Quality assurance. – Indian (NABL) & International systems	
UNIT IV	BIOSAFETY	
Period 1	Biosafety in the laboratory institution,	
Period 2	Laboratory associated infections and other hazards	
Period 3	assessment of biological hazards and levels of biosafety,	
Period 4	prudent biosafety practices in the laboratory/ institution	
Period 5	Biosafety regulations in the handling of recombinant DNA processes and products in institutions	
Period 6	Biosafety regulations in the handling of recombinant DNA processes and products in	

	industries	
Period 7	biosafety assessment procedures in India and abroad	
Period 8	Biotechnology and food safety,	
	The GM-food debate and biosafety assessment procedures for biotech foods	
Period 9	related products, including transgenic food crops	
Period 10	Ecological safety assessment of recombinant organisms and transgenic crops,	
Period 11	Biosafety assessment of biotech pharmaceutical products such as drugs	
Period 12	Biosafety assessment of biotech pharmaceutical products Vaccines	
Period 13	International dimensions in biosafety	
Period 14	Catagena protocol on biosafety	
Period 15	Bioterrorism, convention on biological	
	weapons	

Teaching	PAPER – II : BT 202 r-DNA TECHNOLOGY	
hours		
UNIT I	ENZYMES AND VECTORS USED IN MOLECULAR CLONING.	
Period 1	Introduction rDNA technology	Creation of recombinant DNA molecules
		DNA sequencing, amplification of DNA, expression of genes, Transgenic crops and animals, vaccines, therapeutic proteins.
Period 2	Discovery of restriction enzymes	Contribution of Luria, Human and Weigle in 1950
		Werner Arber and Linn in 1960 and 1968
		Meselson and Yuan, Smith and Kent Wilcox
		Restriction and Modification system
Period 3	Restriction endonucleases, classification	Type-I,II,III, subunits, cofactors, cutting Pattern
Period 4	Properties of Type II Enzymes	Nomenclature, restriction site nature, length, Sticky end and blunt ends, Isoschizomers, Neoschizomers, star activity, Unit definition, Deactivation, sequential and double digestion and applications
Period 5	methylases, polymerases	DAM and DCM Methyl ases, examples and application DNA Polymearase I, Klenow fragment, T7 DNA and RNA Polymerases, Thermostable Polymerases Taq , Pfu, Pow
Period 6	ligases, kinases,	Ligases and operation steps, T4 DNA &E.coli DNA
		ligases, cofactor requirement, Weiss units Kinases: T4 Poly nucleotide kinase properties
Period 7	phosphatases Nucleases,	E.coli, Shrimp and calf Intestine Phosphotase, Antarctic phosphotase, heat inactivation
		DNase I, Exonuclease III, Exonulease VIII, S1 nuclease, Mung bean nuclease
Period 8	RNA dependent DNA polymerase Terminal Deoxynucleotidyltransferase	Discovery, AMV/MAVRT, MULVRT, RNase H activity, cDNA Synthesis

		TDT Homopolymers at 3' end
Period 9	F.Coli plasmid vectors – pBR322	Cloning nurnose of cloning. Conv number, plasmid
i choù s		incompatability Properties of cloping vectors
		Construction of nBB322 series and properties
		Insertional Inactivation
Period 10	pUC18, pET21	pUC18 features, MCS, Bi directional cloning, Lac
		promoter, B galctosidase, IPTG, Xgal, Blue white
		screening , Alpha complementation.
		pET21- properties of expression vectors.
		promoters RBS His tag BL21 (DE3) plys host
Period 11	Bacterio-phage vectors – λ	A genome features, Insertion and replacement vectors
Period 12	M13,Cosmids,	M13- life cycle, Single strand DNA, M13mp1,
		M13mp2, M13mp7
		Cosmids: cos site, larger insert pJB8
Period 13	Phasmids, phagemids	Phasmids -pBluescript-SK, , phagemids -pEMBL8
Period 14	Shuttle vectors Yeast vectors	Feasture of Shuttle vectors – Ecoli and yeast hosts
		Auxotrophic markers, p416GPD
		· · · · · · · · · · · · · · · · · · ·
Period 15	Baculo virus vector	Nucleopolyhedroviruses (NPV), Granuloviruses,
		cell lines are sf9 & sf21, polyhedrin promoter of
		Autographacalifornicapolyhedrosis virus, pfastBac,
		(bacmid)
UNIT II	CONSTRUCTION OF GENOMIC	
	AND CDNA LIBRARIES	
Period 1	DNA cloning.	Generation of DNA fragments by different
		methods: restriction digestion, mechanical
		shearing, duplex cDNA synthesis, chemical
		synthesis, PCR and selection of vector
Period 2	DNA cloning.	Joining to vector: Homo polymer tailing
		Ligation cohesive termini
		Blunt end ligation
		Linkers molecules
		T/A cloning

Period 3	DNA cloning.	Introduction into host: Transfection with
		recombinant phage DNA, Transformation of
		recombinant plasmid, Invitro packing into phage
		coat
Daviad 4	DNA desine	Colortions II bridication DCD Functional
Period 4	DNA cioning.	Selection: Hybridization, PCR, Functional
		complementation
Period 5	Strategies for construction of genomic	Maniatisstratagey, using phage Lambda vector
	libraries	EMBL3A
Period 6	Screening of genomic libraries	Colony hybribidization and plaque hybridizaation
Period 7	chromosome walking.	Restriction mapping, probe preparation
		hybridization fragment 1
Period 8	Strategies for construction of cDNA	Hair pin loop based, oligo d(T) Primer
	libraries	Okavama and herg method. Heidecker& Messing
		method
Period 9	Subtraction libraries	Driver cDNA,Tester cDNA
Period 10	normalized libraries	Genome based, denaturation –hybridization
		method, hydroxyapatite column chromatography
	MOLECULAR CLONING	
Period 1	Labeling of Nucleic acids	End Labelling, Nick translation, random labeling
		Radio active and non radio active
Period 2	Labeling of proteins	Biotin labeling, enzyme labeling, fluorescent probes
Period 3	Southern blot	DNA isolation, digestion, electrophoresis, transfer
		to membrane, crosslinking , probing and detection
Dariad 4	Northern Western	mPNA isolation. Agarosa electrophorosis, transfer
Period 4	Northern, Western,	to mombrane, crosslinking, probing and detection
		to memorane, crossinking, probing and detection
		Protein isolation, SDS PAGE, protein transfer,
		Primary antibody, secondary antibody and washes
		Substrate addition and
Period 5	North- Western,Zoo blots	Both DNA and protein interaction sites
		DNA from animals, digestion, agarose
		electrophoresis and detection
Period 6	Colony	Microbial colonies transferred to nitrocellulose
		membrane, alkali treatment, cross linking and

	hybridization	detection by using probe
Period 7	DNA sequencing – Maxam and Gilbert method	Obtain single strand DNA, Labeling , cleavage by chemicals, high resolution PAGE electrophoresis Detection of sequences
Period 8	Sanger's method,	Chain termination and fluorescent labeled dyes
		Single strand DNA, Labelled primer, dideoxy nucleotides
Period 9	PCR technology	Taq polymerase, primers, template, dNTPS, Mg. Primer design, Denaturation, annealing, Extension
Period 10	PCR Technology	Types Reverse, real time, nested, multiplex, Arbitaryand Applications
Period 11	Cloned gene expression.	Codon optimization
		Transcription termination
		Secondary structure mRNA
Period 12	Factors influencing cloned gene	Ribosome binding site
	expression	Promoter strength
Period 13	Factors influencing cloned gene expression	Plasmid copy number
		Plasmid stability
		N terminal or c terminal fusions
		Host cell physiology
		Post translations modifications, glycosyslation
Period 14	siRNA	DICER, RISC
Period 15	Gene Silencing	Applications, cancer, Infectious diseases, vaccines
UNIT IV	SELECTION AND ANALYSIS OF RECOMBINANT CLONES	
Period 1	Genetic selection – alpha	B-galactosidase, x-gal , IPTG, Lac promoter,
	complementation,	blue white screening
Period 2	Insertional inactivation	Plasmids with two antibiotic resistance makers
		Transformed, transformed with no recombinant

		Transformed with insert
Period 3	Screening of libraries using labeled probes	Colony hybridization , plaque hybridization, antibody Probe
Period 4	Restriction mapping of cloned fragments	Restriction digestion and agarose gel electrophoresis , probing and detection
Period 5	S1 Nuclease Mapping	Mapping of transcription start site termination site, mapping of introns site, quantitative estimation of particular mRNA
Period 6	Hybrid arrest	Cloned DNA,
Period 7	hybrid released translation	
Period 8	Site directed mutagenesis	Principles and various methods of SDM
Period 9	Site directed mutagenesis applications	Functional and structural protein studies and protein engineering , predicting the ligand binding sites. Increased expression of proteins, Addition of motifs to enhance the protein purification.
Period 10	Applications of rDNA technology	
Period 11	In Agriculture/ Animal	Abiotic and biotic stress tolerant transgenic plants Phytofortification, biopharming
Period 12	Medicine and Health care	Vaccines , therapeutics, Enzymes, Disease models Gene therapy
Period 13	Environment	Bioremediation by Genetically Modified organisms
Period 14	Diagnosis	DNA Finger printing ,PCR
Period 15		

Teaching	BT 303 PLAN	T BIOTECHNOLOGY
hours		
UNITI	PLANTS	
Period 1	Introduction to Plant Biotechnology	
Period 2	Introduction to totipotency of Plant cells	
Period 3	Types of media	
Period 4	Types of media	
Period 5	Initiation of Callus	
Period 6	suspension cultures	
Period 7	Micropropogation	
Period 8	Protoplast culture and fusion	
Period 9	Development of somatic hybrids	
Period 10	organogenesis	
Period 11	embryogenesis.	
Period 12	Encapsulation and production of synthetics seeds	
Period 13	Production of haploids through Anther	
Period 14	Production of haploids through pollen culture	
Period 15	Technology of freeze preservations and crop improvement	
UNIT II	PRODUCTION OF COMMERCIALLY USEFUL COMPOUNDS BY CELL CULTURES	
Period 1	Advantages of cultured plant cells and tissues	
Period 2	Cell line selection	
Period 3	commercial production	

Period 4	permeabilisation	
Period 5	elicitation	
Period 6	immobilisation	
Period 7	Induction of hairy root cultures	
Period 8	Hairy root culture uses	
Period 9	Biotransformations	
Period 10	Application of Biotransformations	
UNIT III	MOLECULAR MECHANISMS OF ABIOTIC STRESS TOLERANCE IN CROP PLANTS	
Period 1	Introduction to ABIOTIC STRESS	
Period 2	Drought stress tolerance	
Period 3	Drought stress tolerance	
Period 4	Flooding stress tolerance	
Period 5	Flooding stress tolerance	
Period 6	Salt stress tolerance.	
Period 7	Salt stress tolerance.	
Period 8	High temperature stress tolerance	Chain termination and fluorescent labeled dyes
Period 9	Low temperature stress tolerance	Components, Methodlogy, Primer design
Period 10	Photooxidative (light) stress tolerance	Types and Applications
Period 11	Photooxidative (light) stress tolerance	
Period 12	Metal stress tolerance	
Period 13	Metal stress tolerance	
Period 14		
Period 15		
UNIT IV	MOLECULAR MECHANISMS OF BIOTIC STRESS TOLERANCE IN CROP PLANTS	
Period 1	Introduction to BIOTIC STRESS	
Period 2	Biotic stress tolerance mechanisms	

Period 3	Bacterial resistance	
Period 4	Bacterial resistance	
Period 5	Fungal resistance	
Period 6	Fungal resistance	
Period 7	Viral resistance	
Period 8	Viral resistance	
Period 9	Molecular markers a	
Period 10	Molecular markers a	
Period 11	Molecular markers a	
Period 12	crop improvement	
Period 13	crop improvement	
Period 14		
Period 15		